

IIPM SCHOOL OF ENGINEERIN AND TECHNOLOGY LESSON PLAN: SUMMER 2022 THERMAL ENGINEERING-II

Semester: 4th

Branch: MechanicalDuration: 60Faculty name: SarObjective: Modern

: Saritprava Sahoo

: Modern society needs lots of applications of thermodynamics, which deals with energy possessed by hot vapors, its production and its application in

different fields.

Learning Outcome : Understanding effectiveness of

- ✓ *The power developed in I.C engine and efficiency.*
- ✓ The principle, performance and application of air compressor.
- ✓ Thermodynamic properties of steam using steam tables & mollier chart.
- ✓ The working of various steam generators i.e. Boilers.

✓ The vapor power cycles and computing work done & efficiencies thereof.

Sl. No	Chapter	Proposed Week for	Period	Subject Name	Important Teaching Points	Content Source
110		Teaching	110.	TVanic		Source
1	Ι	1 st	1		 Define mechanical efficiency, 	
2	-		2	n, n,	> Indicated thermal efficiency,	
3			3	.20	 Relative Efficiency, 	
				u	brake thermal efficiency	
4			4	C)	➢ overall efficiency	
5		2 nd	1	f I.C	 Mean effective pressure & specific fuel consumption. 	
6			2	ce o	 Define air-fuel ratio & calorific value of fuel. 	R .S. khrumi
7			3	nan	 Work out problems to determine efficiencies & 	
8			4	L	 Specific Fuel Consumption. 	
9		3 rd	1	fo	 Solved Simple Numerical 	
10			2	el	> ASSIGNMENT	
11			3		CLASS TEST	
12	П		4		Explain functions of compressor &	
- 10		th		-	industrial use of compressor air	
13		4"	1		Classify air compressor & principle of operation.	
14			2	sor	 Describe the parts and working principle of reciprocating Air compressor. 	
15			3	pres	 Explain the terminology of reciprocating compressor such as bore, stroke, 	Thermal engg
16			4	Om	 pressure ratio free air delivered &Volumetric efficiency. 	khrumi
17		5 th	1	L C	 Derive the work done of single stage with and without Clearance. 	
18			2	Ai	 Derive the work done two stage compressor with and without Clearance. 	
19	1		3		 Solve simple problems (without clearance only) 	
20			4		> ASSIGNMENT	

21		6 th	1		CLASS TEST	
22	III		2		Difference between gas & vapours.	Thermal engg
23			3		Formation of steam.	R .S.
24			4	am	Representation on P-V, T-S, H-S, & T H diagram	Kintunn
25			4	te	 Definition & Properties of Steam. 	
26		4 th	1	N N	➢ Use of steam table & mollier chart	
				of	for finding unknown properties.	
27			2	SS	Non flow & flow process of vanour	
28			3	ti	 P-V. T-S & H-S. diagram. 	
29			4)et	 Determine the changes in 	
		41		do	properties	
30		5 ^m	1	Pr	 Solve simple numerical. 	
31			2		> ASSIGNMENT	
32			3		CLASS TEST	
33	IV		4		Classification & types of Boiler.	Thermal engg
34		6 th	1	or	Important terms for Boiler.	K .S. khrumi
35			2	atc	 Comparison between fire tube & Water tube Roiler 	
36			3	ers	 Description & working of common 	
			_	ů ne	boilers (Cochran, Lancashire,	
37			4	C)	Description & working of common	
28		7 th	1		boilers Babcock & Wilcox Boiler)	
50		1	1	an	balanced)	
39			2	te	 Boiler mountings & accessories. 	
40			3	S	> ASSIGNMENT	
41	V	8 th	4		 CLASS TEST Carnot cycle with vapour 	Thermal engg
42	v	0	2	S	 Derive work & efficiency of the 	R .S.
45			2	ile	cvcle.	khrumi
44			3) dc	 Rankine cycle. 	
45			4	Ŭ	Representation in P-V, T-S & h-s	
10		oth	1	er	diagram.	
46		9	1	A	Derive Work & Efficiency.	
47			2	P0	Effect of Various end conditions in Bankine cycle	
40			3	n [Reheat cycle & regenerative Cycle. 	
50			4	ar	 Solve simple numerical on Carnot 	
				te	vapour Cycle & Rankine Cycle.	
51		10^{th}	1	\mathbf{N}	> ASSIGNMENT	
52	VI		2		 CLASS TEST Modes of Heat Transfer 	Thermal engo
55	V I		5		(Conduction, Convection,	R .S.
				J.	Radiation).	khrumi
54			4	sfe	Fourier law of heat conduction and	
55		11 th	1	nu;	Inermal conductivity (K). Newton's laws of cooling	
56		11	2	L ²	 Radiation heat transfer (Stefan, 	
				t T	Boltzmann &	
57			3	ea 1	Kirchhoff's law) only statement, no	
				H	noblem	
58			4		 6.5 Black body Radiation, 	
		41			Definition of Emissivity,	
59		12 ^m	1		absorptivity, & transmissibility.	

Thermal engg	 Solved Simple Numerical 	2		60
- R.S. Khrumi	> ASSIGNMENT	3	-	61
-	> CLASS TEST	4	-	62
-	> CLASS TEST	4	-	62

- Text book suggested :
 ➢ Thermal Engineering.
 ➢ Thermal Engineering.
 ➢ Thermal Engineering.

R.S. Khurmi	S.Chand
A.R.Basu	Dhanpat Rai
A.S. Sarao	Satya Prakash

Signature of Faculty Member

HOD

Principal/ Director