

IIPM SCHOOL OF ENGINEERIN AND TECHNOLOGY

LESSON PLAN: SUMMER 2022

Sub : Fluid Mechanics & Hydraulic Machine (Th-3)

Faculty name : Deeptikant Sharma

Branch : MECHANICAL ENGINEERING

Semester : 4th

Duration : 60 hours

OBJECTIVE

THE COURSE ON FLUID MECHANICS IS DEVISED TO INTRODUCE FUNDAMENTAL ASPECTS OF FLUID FLOW BEHAVIOUR.

STUDENTS WILL LEARN TO DEVELOP STEADY STATE MECHANICAL ENERGY BALANCE EQUATION FOR FLUID FLOW SYSTEMS, ESTIMATE PRESSURE DROP IN FLUID FLOW SYSTEMS AND DETERMINE PERFORMANCE CHARACTERISTICS OF FLUID MACHINERY.

LEARNING OUTCOME: -SL.NO	CHAPTER	PROPOSED WEEK FOR TEACHING	LECTURE NO.	SUB. TOPIC	IMPORTANT TEACHING POINTS	CONTENT SOURCE
1	1		1	Properties of Fluid	DENSITY OR MASS DENSIRTY SPECIFIC WEIGHT OR WEIGHT DENSITY, SPECIFIC VOLUME SPECIFIC GRAVITY	R.K. BANSAL
2		I	2	Properties of Fluid	solve simple problems.	R.K. BANSAL
3			3	Properties of Fluid	VISCOCITY UNITS OF VISCOCITY	R.K. BANSAL
4			4	Properties of Fluid	NEWTONS LAW OF VISCOSITY VARIOUS VISCOSITY WITH TEMPERETURE	R.K. BANSAL
5	2		1	Properties of Fluid	solve simple problems	R.K. BANSAL
6			5	Properties of Fluid	SURFACE & TENSION AND CAPILARITY	R.K. BANSAL
7			3	Properties of Fluid	SURFACE TENSION ON LIQUID DROPLET SURFACE TENSION ON A	R.K. BANSAL

				HOLLOW BUBBLE	
8	_	4	Properties of	SURFACE TENSION ON A	R.K. BANSAL
_			Fluid	HOLLOW JET	
				solve simple	
				problems	
9	9 3	1	Fluid Pressure and its	FLUID PRESSURE AT A POINT PASCAL'S LAW	R.K. BANSAL
10	_	2	measurements	DDECCLIDENAVA DIE ATIONI IN A	D IZ DANICAL
10			Fluid Pressure and its measurements	PRESSUREMVARIEATION IN A FLUID AT REST	R.K. BANSAL
11		3	Fluid Pressure	solve simple	R.K. BANSAL
			and its measurements	problems	
12		4	Fluid Pressure and its measurements	ABSULATE, GAUGE, ATMOSPHERIC AND VACUME PRESSURES	R.K. BANSAL
13	4	1	Fluid Pressure and its measurements	MEASUREMENT OF PRESSURE SIMPLE MANOMETERS	R.K. BANSAL
14		2	Fluid Pressure	solve simple	R.K. BANSAL
			and its measurements	problems	
15		3	Fluid Pressure and its measurements	SINGLE COLUMN MANO METER DOUBLE COLUMN MANO METER	R.K. BANSAL
16		4	Fluid Pressure and its measurements	solve simple problems	R.K. BANSAL
17	5	1	Hydrostatics	INTRODUCTION TOTAL PRESSURE & CENTER PRESSURE	R.K. BANSAL
18		2	Hydrostatics	VERTICAL PLANE SURFACE SUBMERGED IN LIQUID	R.K. BANSAL
19		3	Hydrostatics	solve simple	R.K. BANSAL
				problems	
20		4	Hydrostatics	HORIZONTAL PLANE SURFACE SUBMERGED IN LIQUID	R.K. BANSAL
21	6	1	Hydrostatics	INCLIND PLANE SURFACE SUBMERGED IN LIQUID	R.K. BANSAL
22		2	Hydrostatics	HORIZONTAL PLANE SOLVE SIMPLE PROBLEMS	R.K. BANSAL
23		3	Hydrostatics	INCLIND PLANE SOLVE SIMPLE PROBLEMS	R.K. BANSAL
24		4	Hydrostatics	SOLVE SIMPLE PROBLEMS	R.K. BANSAL
25	7	1	Kinematics of Flow	METHODS OF DESCRIBING FLUID MOTION	R.K. BANSAL

26		2	Kinematics of Flow	TYPES OF FLUID FLOW	R.K. BANSAL
27		3	Kinematics of Flow	RATE OF FLOW OR DISCHARGE CONTINUTY EQUATION	R.K. BANSAL
28		4	Kinematics of Flow	SIMPLE PROBLEMS	R.K. BANSAL
29	8	1	Kinematics of Flow	CONTINUITY EQUATION IN THREE- DIMENSION	R.K. BANSAL
30		2	Kinematics of Flow	CONTINUITY EQUATION IN CYLINDRICAL POLAR CORDINATE	R.K. BANSAL
31		3	Kinematics of Flow	SIMPLE PROBLEMS	R.K. BANSAL
32		4	Kinematics of Flow	SIMPLE PROBLEMS	R.K. BANSAL
33	9	1	orifices, notches & weirs	CLASSIFICATION OF ORIFIC FLOW THROUGH OF ORIFIC	R.K. BANSAL
34		2	orifices, notches & weirs	COFFICENT OF VELOCITY COFFICENT OF CONTRACTION COFFICENT OF DISCHARGE	R.K. BANSAL
35		3	orifices, notches & weirs	SIMPLE PROBLEMS	R.K. BANSAL
36		4	orifices, notches & weirs	DETERMINATION COFICENT OF VELOCITY SIMPLE PROBLEMS	R.K. BANSAL
37	10	1	orifices, notches & weirs	CLASSIFICATION OF NOTCH & WIRE	R.K. BANSAL
38		2	orifices, notches & weirs	DISCHARGE OVER A RECTANGULAR NOTCH & WIRE SIMPLE PROBLEMS	R.K. BANSAI
39		3	orifices, notches & weirs	DISCHARGE OVER A TRINGLE NOTCH & WIRE SIMPLE PROBLEMS	R.K. BANSAL
40		4	orifices, notches & weirs	DISCHARGE OVER A TRAPEZOIDAL NOTCH & WIRE	R.K. BANSAL
41	11	1	Flow through pipe	INTRODUCTION LOSS OF ENERGY IN PIPES	R.K. BANSAL
42		2	Flow through pipe	LOSS ENERGY DUE TO FRICTION	R.K. BANSAL
43		3	Flow through pipe	SIMPLE PROBLEMS	R.K. BANSAL
44		4	Flow through pipe	Darcy's and Chezy's formula Solve Problems using Darcy's and Chezy's formula.	R.K. BANSAL
45	12	1	Flow through	SIMPLE PROBLEMS	R.K. BANSAL

			pipe		
46		2	Flow through	MINNER ENERGY HEAD LOSSES	R.K. BANSAL
			pipe		
47		3	Flow through	SIMPLE PROBLEMS	R.K. BANSAL
			pipe		
48		4	Flow through	Hydraulic gradient and total	R.K. BANSAL
			pipe	gradient line	
49	13	1	Impact of jets	INTRODUCTION	R.K. BANSAL
				FORCE EXERTED BY THE JET ON	
				A STATIONARY VERICAL PLATE	
50		2	Impact of jets	INTRODUCTION	R.K. BANSAL
51		3	Impact of jets	FORCE EXERTED BY THE JET ON	R.K. BANSAL
				STATIONARY VERTICAL PLATE	
52		4	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
53	14	1	Impact of jets	Derivation of work done on	R.K. BANSAL
				series of vanes and condition	
				for maximum efficiency.	
54		2	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
55		3	Impact of jets	FORCE EXERTED BY A JET ON	R.K. BANSAL
				STATIONARY INCLIND PLATE	
56		4	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
57	15	1	Impact of jets	FORCE EXERTED BY A JET ON	R.K. BANSAL
				STATIONARY INCLIND PLATE	
58		2	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
59		3	Impact of jets	JET STRIKE THE CURVED PLATE	R.K. BANSAL
				AT ONE END TANGENTIALLY	
60		4	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL

TEXT BOOK SUGGESTED	· INTERNET & PERSONAL NOTES

SIGNATURE OF

FACULTY MEMBER HOD PRINCIPAL/ DIRECTOR